Data Cycling: Mathing Out the Right Course

University

Virginia

2025 Annual VAST PDI November 13 -15

Alexandria, Virginia

Jake Trusheim Environmental Educator Blandy Experimental Farm vtm6rq@virginia.edu

Stefany Feldbusch, M.Ed.E.E.
Environmental Educator
Blandy Experimental Farm
stefanyfeldbusch@virginia.edu

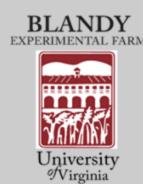
Session Agenda

- Introduction
- Session objective
- Accessing the VA Math SOLs
- Key differences at each grade level
- Engage in data collection
- Examples of the data cycle at different grade levels
- VDOE 2025 graph progression document
- Informal education and the data cycle
- Student resource for data representation
- Closing

University of Virginia's
Blandy Experimental Farm
&
The State Arboretum of
Virginia

- Field ecological research station
- The State Arboretum of Virginia

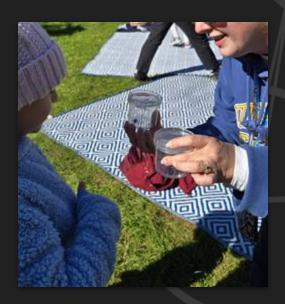
University of Virginia's
Blandy Experimental Farm
&
The State Arboretum of
Virginia



Blandy's Mission: To increase understanding of the natural environment through research and education

Education Outreach

- Hands-on, outdoor, experiential field investigations
- ~7000 PK-12 students per year
- Inquiry, Science Process and Skills focused programs
- Correlated to state and national standards
- Field-based STEM Learning
- Teacher professional development



Session Objective

During this session you will learn how to integrate the 2023 VA Mathematics SOLs into student inquiry-based learning of the data cycle. There will be a <u>focus on authentic data collection</u>.

The 2023 VA Math SOLs address how students apply the data cycle by:

- posing questions
- collecting data
- organizing and representing data
- analyzing data
- communicating results

Accessing the 2023 VA Mathematics SOLs

Specific K-8th grade standards, addressing the data cycle, are found under the *Probability and Statistics* section in each grade.

What are the key differences at each grade level?

 How data is organized and displayed

Depth of analysis

Questioning throughout the data cycle

The number of data points/ categories

Early Elementary Application of the Data Cycle

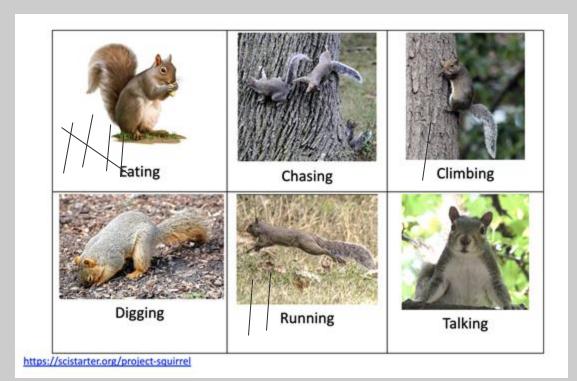
According to the 2023 VA Math SOLs

Grade Level	Number of data points/ categories	Collecting/ Displaying Data	Questioning	
К	25 or fewer data points; no more than 4 categories	sorting into groups; object graphs; picture graphs (vertically or horizontally)	; picture graphs <u>predetermined context</u> ,	
1st	25 or fewer data points; no more than 4 categories; one or two attributes	tallying; T-charts; object graphs; picture graphs; tables	Pose questions, given a predetermined context, that require the collection of data	
2nd	25 or fewer data points; No more than 6 categories	lists; tables; charts; tallying; pictographs (Symbols can represent up to 2 data points); bar graphs; graphs with title and labeled axes (increments increase by 1 or 2)	Pose questions, given a predetermined context, that require the collection of data	

Upper Elementary Application of the Data Cycle

According to the 2023 VA Math SOLs

Grade Level	Number of data points/ categories	Collecting/ Displaying Data	Questioning	
3rd	30 or fewer data points; No more than 8 categories Polls; observations; tallying; pictographs (Symbols can represer 1,2,5 or 10 data points bar graphs; graphs wit title and labeled axes (increments increase b 2, 5, or 10)		Formulate questions that require the collection or acquisition of data	
4th	No more than 10 data points on line graphs	Line graphs; graphs with title and labeled axes (whole number increments)	Formulate questions that require the collection or acquisition of data	
5th	30 or fewer data points	stem-and-leaf plot (stems and leaves listed in ascending order); Line plot/ dot plot (may include whole numbers, fractions, or decimals); find mean, median, mode, and range; include keys	Formulate questions that require the collection or acquisition of data	BLANDY EXPERIMENTAL FARM University Virginia

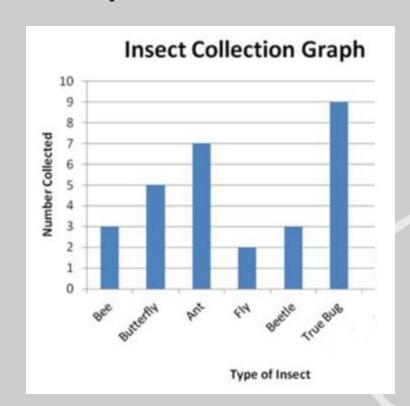

Middle School Application of the Data Cycle

According to the 2023 VA Math SOLs

Grade Level	Number of data points/ categories	Collecting/ Displaying Data	Questioning
6th	Determine factors that ensure that the data collected is a sample that is representative of a larger population	Circle graphs (denominators of 12 or less or those that are factors of 100); justify which graphical representation best represents the data	Formulate questions that require the collection or acquisition of data
7th	Determine how sample size and randomness will ensure that the data collected is a sample that is representative of a larger population	Histograms; justify which graphical representation best represents the data	Formulate questions that require the collection or acquisition of data
8th	20 or fewer items in plots; Determine whether two events are <u>independent or</u> <u>dependent</u>	Box plots; scatterplots; describe how outliers affect data distribution; justify which graphical representation best represents the data	Formulate questions that require the collection or acquisition of data; Identify components of graphical displays that can be misleading

Example of K-2nd Data Collection

Students tally squirrel behaviors as they observe them in nature.


Option: Submit results to Project Squirrel

Let's head outside to observe squirrel behavior!

Activity expectations:

- Collect data as a K-2nd grader.
- Discussion: How could this activity be adapted for a 3rd-5th grader? 6th-8th grader?

Example of 2nd-3rd Grade Data Collection

Students collect insects in the pollination garden and create a class bar graph displaying their data.

Example of 3rd-4th Grade Data Collection

Prnithologist(s):		Ornithologist(s):	
My Bird Observation	ns	My Bird Observatio	ns
Veather:	Field	Date: Time:	Field
ocation:	Woods	Weather:	Woods
	Other	Location:	Other
pecies		Species	Conci
American Crow		American Crow	
American Goldfinch		American Goldfinch	
American Robin		American Robin	
Blue Jay		Blue Jay	
Carolina Chickadee		Carolina Chickadee	
Carolina Wren		Carolina Wren	
Chipping Sparrow		Chipping Sparrow	
Dark-Eyed Junco		Dark-Eyed Junco	
Downy Woodpecker		Downy Woodpecker	
Eastern Bluebird		Eastern Bluebird	
Eastern Towhee		Eastern Towhee	
Gray Catbird		Gray Catbird	
House Finch		House Finch	
Mourning Dove		Mourning Dove	
Northern Cardinal		Northern Cardinal	
Northern Mockingbird		Northern Mockingbird	
Red-Bellied Woodpecker		Red-Bellied Woodpecker	
Red-breasted Nuthatch		Red-breasted Nuthatch	
Song Sparrow		Song Sparrow	
Tree Swallow		Tree Swallow	
Tufted Titmouse		Tufted Titmouse	
Turkey Vulture		Turkey Vulture	
White-breasted Nuthatch		White-breasted Nuthatch	
White-throated Sparrow		White-throated Sparrow	
there flictle		Others (Est):	

Students create a graph based on their data.

Option: Submit results to eBird.

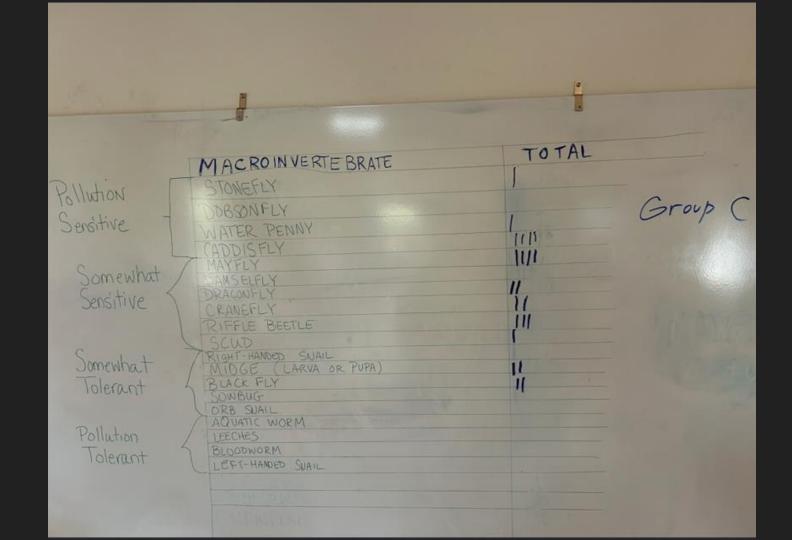
Example of 6th Grade Data Collection

Students record the quality of water based on the pollution tolerance of macros they identified. Students create a graph to represent their data. Macro data is submitted to DWR.

Macroinvertebrate Data Sheet

Pollution Tolerance Index

- Place a tally next to each macroinvertebrate group present in your sample. For example, whether you
 find one mayfly or fifty mayflies, place one check next to the mayfly line in Group 1.
- 2. Calculate the group scores using the multipliers provided.
- 3. Find the sum of the group scores for your Total Score.
- Compare your Total Score with the Water Quality Assessment Chart scores and record the relative water quality rating for your stream sample.


	Group I	Group 2		Group 3	Group 4
	Macroinvertebrates:	Macroinvertebrates:		Macroinvertebrates:	Macroinvertebrates:
	Very Intolerant	Intolerant		Tolerant	Very Tolerant
1	Stoneflies	Mayfly		Right-handed snail	Aquatic Worm
-	Dobsonflies	Damselfly		Midge	Leeches
	Water penny	Dragonfly		Blackfly	Bloodworm
	Caddisflies	Cranefly		Sowbug	Left-handed snail
		Riffle Beetle		Orb snail	
_		Scuds	_	- 11 1	
	# of checks=	# of checks =		# of checks =	# of checks =
2	x4	x3		x2	X 1
	Group Score =	Group Score =		Group Score =	Group Score =
	·		Г	Water Quality Assessment Chart:	
	Your Water Quality Assessment: Total Score =			≥ 23 Potentially Excell	ent Water Quality
3			4	17-22 Potentially Good Water Quality	
				11-16 Potentially Fair Water Quality	
				≤ 10 Potentially Poor	Water Quality

Examine the Data

Does your data support your prediction? Why or why not?

Example of 8th Grade Data Collection

bud**burst**

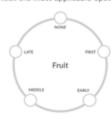
a project of the Chicago Botanic Garden

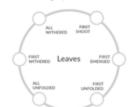
When did you observe?

Date

Which plant did you observe?

Common Name or Scientific Name


Plant Nickname e.g. Backyard Lily. This helps you make another observation on this plant in the future.


What is your plant doing? Check the most applicable option for each category below.

Address

Latitude

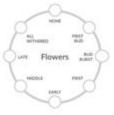
Longitude

PHENOLOGY OBSERVATIONS

Where did you make your observation?

Provide address OR latitude/longitude.

City, State/Province, Postal code


WILDFLOWERS AND HERBS

Project Budburst is a Community Scientist Project of the Chicago Botanical Garden.

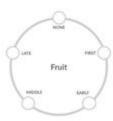
budburst

a project of the Chicago Botanic Garden

PHENOPHASE DEFINITIONS WILDFLOWERS AND HERBS

Flowers

None - No flowers or buds visible.

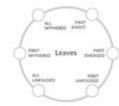

First Bud - First flower bud is visible.

Bud Burst - Flower sepals, also called bud scales, have opened to reveal the emerging flower. The color of the flower can be recognized. First - First flower is fully open. When open, you will see the stamens/ pistils among the unfolded petals.

Early - Few flowers are open (less than 5%).

Middle - Half or more of the flowers are completely open. Late - Most flowers have wilted or fallen off (over 95%).

All Withered - All flowers have wilted or fallen off.


Fruit

None - No ripe fruits or seeds are visible. There is no fruit, or fruit is not yet ripe.

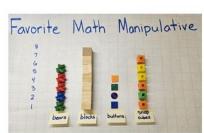
First - First fruits are fully ripe or a few seeds are dropping naturally from the plant. Ripening is usually indicated by a change in color to the mature color, or by drying and splitting open (for dry fruits such as capsules).

Early - Only a few ripe fruits or seeds are visible (less than 5%). Middle - Half or more of the fruits are completely ripe or seeds are dropping naturally from the plant.

Late - Most fruits or seeds have been dispersed from the plant (over 95%).

Leaves

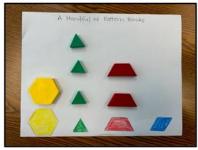
First Shoot - First appearance of the growing shoot is visible above ground.

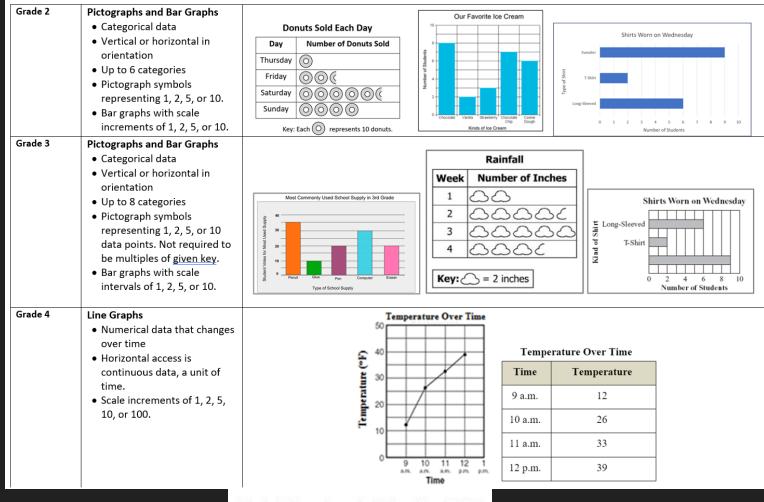

First Emerged - First leaf has emerged. The leaf shape should be clearly visible, but it can still be partly folded.

First Unfolded - First leaf has unfolded and is at least 75% of its mature size.

All Unfolded - All emerged leaves are fully visible in their mature form. First Withered - First leaf, of those that developed this season, has lost its green color or is dried and dead.

All Withered - Most or all of the leaves that developed this season have lost their green color or are dried and dead,


Grade	Type of Graph		
	Considerations		
Kindergarten	Object Graphs and Picture Graphs Categorical data Vertical or horizontal in orientation Up to 4 categories Picture graph symbols represent 1 data point. Objects represent 1 data point.		
Grade 1	Object Graphs, Picture Graphs, and Tables Categorical data Vertical or horizontal in orientation Up to 4 categories Picture graph symbols represent 1 data point. Objects represent 1 data point. Tables may include numbers or tally marks.		


Example Graphs

Pets Animals Number Dogs OOO Cats OO Birds O Lizards OO

Favorite Res	source Class	
Gym ###		
Art	IIII	
Music	##1	

Grade 5 Stem-and-leaf Plots and Line Minutes Walked Per Student During the Plots Weekend Discrete numerical data Stem Leaf • 30 or fewer data points • Line plots may contain whole 6 numbers, fractions or 5,7,8 decimals 1,-4,5,6 Number of Books Read Times for a 100-yard Dash 1,3,7,7,7 0.0.4.8 2,2,2,3,8 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 Key 2|5 = 25Seconds Each x represents one student Grade 6 Circle Graphs Fruit Preferences in Mrs. Jones' Class • Percent or frequency of categorical or discrete numerical data 30% Number of data values **Fruit Preference** # of students 15% limited to allow for banana 6 comparisons that have 35% 7 apple denominators of 12 or less 3 pear or factors of 100. strawberry 4 ■ Banana ■ Apple ■ Pear ■ Strawberry Grade 7 Histograms **Cappuccinos Made Per Hour** Frequency of numerical data **Number of Cappuccinos Made** · Vertical or horizontal in per Hour at the Cafe orientation **Number of Cups** Tally Frequency of Coffee 0 - 3 2 4-7 111 3 8-11 8 12 – 15 111 3 **Number of Cappuccinos Made Per Hour** 16 - 19

Link to data cycle progression document:

https://www.doe.virginia.g ov/home/showpublishedd ocument/61373/63881526 9230100000

Blandy Eco Explorers Camp

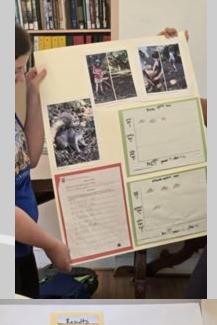
Campers in 6th-8th grade spend one week out of the summer completing an ecological research project. A research forum takes place at the end of the week when they share their results to parents, Blandy staff, and visiting scientists. They work in small groups:

- formulating a research question
- designing an observational study/ experiment
- collecting data
- designing poster presentations, displaying their findings on graphs/ charts/ plots

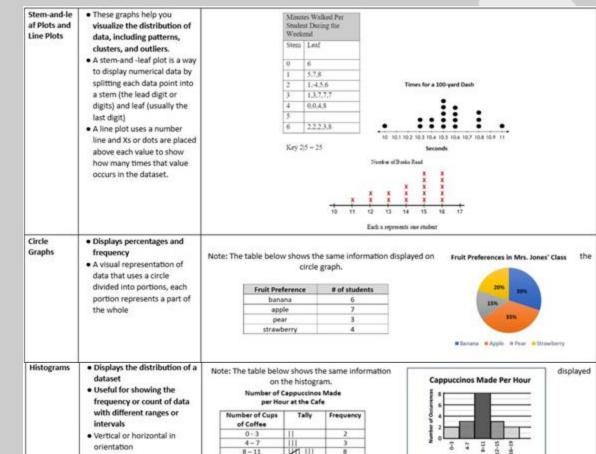
Resource for Middle Schoolers

Types of Graphs/ Charts Used to Represent Data

Pictographs Categorical data Rainfall and Bar · Vertical or horizontal in **Number of Inches** Graphs orientation Most Consessing West Street Staum P. 340 Street Shirts Worn on Wednesday. · A pictograph displays E Long-Sleeved symbols representing data points. T-Shirt Key: < = 2 inches Number of Students **Line Graphs** Temperature Over Time · Numerical data that displays change over time · The x-axis typically represents time, while the Temperature Over Time y-axis represents the variable Time Temperature being measured. 9 a.m. 12 . It connects data points with 10 a.m. 26 lines that display trends, patterns, and fluctuations in 33 11 a.m. the data. 9 10 11 12 1 12 p.m. Note: The table above shows the same information displayed on the line graph Scatter plots · Each point represents a pair No Relationship Positive Relationship Negative Relationship of values from two different variables


Variable I

Variable I


Variable 1

· The plot shows the relationship (if any) between two different

variables

Graph images derived from Virginia Department of Education's Data Cycle Graph Progression document.

12-15

16-19

III

Number of Cappuctines Made Per Hour

Thank you!

Stefany Feldbusch, M.Ed.E.E. Environmental Educator Blandy Experimental Farm stefanyfeldbusch@virginia.edu

Jake Trusheim Environmental Educator Blandy Experimental Farm emilyford@virginia.edu

https://blandy.virginia.edu/pk-12-education

Accessing Project Squirrel

https://scistarter.org/form/project-squirrel

Accessing eBird

https://ebird.org/home

Accessing Budburst

https://budburst.org/

Course	Number of data points/categories	Collecting/Displaying Data	Questioning
	30 or fewer data points, determine method to collect a <u>representative sample</u> , to answer a question.	Scatterplot, use available technology to determine whether a linear or quadratic function would represent the relationship	Formulate Questions that require the collection of bivariate data
	Investigate, describe, and determine the best sampling techniques, such as simple random sampling, stratified sampling, and cluster sampling	Collect or acquire bivariate data. Investigate, describe, and determine the best sampling techniques, such as simple random sampling, stratified sampling, and cluster sampling	Formulate investigative questions that require the collection or acquisition of bivariate data, where exactly two of the variables are quantitative.
	Collection or acquisition of a large set of univariate quantitative data Determine whether the relationship between two quantitative variables is best approximated by a linear, quadratic, exponential, or a combination of these functions.	Collect or acquire univariate data through research, or using surveys, observations, scientific experiments, polls, or questionnaires. Describe and interpret a data distribution represented by a smooth curve by analyzing measures of center, measures of spread, and shape of the curve.	Formulate investigative questions that require the collection or acquisition of a large set of univariate quantitative data or summary statistics of a large set of univariate quantitative data and investigate questions using a data cycle.
Descriptive Statistics	Compare and contrast <u>two or more univariate</u> <u>data sets</u> , numerically and graphically	Create and interpret graphical displays of data, including dot plots, stem plots, box plots, cumulative frequency graphs, and histograms, using appropriate technology	Investigate and explain the influence of outliers on a univariate data set. Investigate and explain ways in which standard deviation addresses variability